Stochastic Optimal Control Model for
Natural Gas Network Operations*

Victor M. Zavala
Mathematics and Computer Science Division
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA

Abstract

We present a stochastic optimal control model to optimize gas network inventories in the face of sys-
tem uncertainties. The model captures detailed network dynamics and operational constraints and uses a
weighted risk-mean objective. We perform a degrees-of-freedom analysis to assess operational flexibility
and to determine conditions for model consistency. We compare the control policies obtained with the
stochastic model against those of deterministic and robust counterparts. In addition, we demonstrate
that the use of risk metrics can help operators to systematically mitigate system volatility. Moreover,
we discuss computational scalability issues and effects of discretization resolution on economic perfor-
mance.

1 Introduction

Consider a gas network with links comprising of long pipelines and nodes consisting of junction points and
compressors. Gas is withdrawn from the network at a set of demand nodes and make-up gas is brought
into the system through a set of supply nodes. In a real-time environment, the system operator must bal-
ance the network to satisfy demand flows and delivery pressures at all times. To achieve this balance,
compressors are operated to coordinate buildup and release of inventory inside the pipes. This procedure,
called “line-pack management” [20], consists on determining dynamic operating policies for the compres-
sors to balance supply, inventory, and demand. The policies must respect compression limits and minimize
compressor power or fuel. One of the key issues arising in operations is that demand profiles cannot be
predicted with full certainty and thus inventory must be built up, in advance, to ensure that enough ca-
pacity is available to satisfy a range of possible future scenarios. Uncertainty in gas pipeline operations is
becoming an increasing concern as the power grid adopts larger amounts of intermittent weather-driven
resources, because gas-fired power plant units are typically used to balance supply at short notice [13, 20].

Optimization of gas networks has been performed in diverse studies. These studies differ in the decision
setting and physical models used. Optimization models for mid-term planning and contracting purposes
do not require information about line-pack dynamics so steady-state models are appropriate. O'Neill et.al.
[18] present a steady-state optimization model for transmission of natural gas. Wolf and Smeers [7] present
anonlinear steady-state transmission model and develop an extension of the simplex method to solve it. An
optimal design model for pipes diameters is proposed by the same authors in [6]. Martin et.al. [15] present
a steady-state nonlinear transmission model that allows for hybrid (on/off) decisions (a mixed-integer
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nonlinear optimization model) and develop strategies to approximate nonlinear terms using piecewise
linear functions, thus enabling the use of mixed-integer linear programming solvers.

For real-time operations system dynamics must be captured in order to ensure feasible and imple-
mentable policies. Moritz [16] presents a mixed-integer optimal control model with detailed conservation
and momentum equations, network balances, and hybrid valve and compressor components. As the au-
thor acknowledges, however, computational limitations forced her to consider conservation and momen-
tum equations in simplified form, by defining only inlet and output points. This is equivalent to discretizing
the underlying partial differential equations (PDEs) using two discretization points placed at the bound-
ary nodes. Ehrhardt and Steinbach [9] present a nonlinear continuous optimal control model in which
compressor policies are optimized to satisfy demands and minimize compressor fuel. A full space-time
discretization of the PDEs is performed and a sequential quadratic programming algorithm is used for the
solution of the resulting nonlinear programming (NLP) problem. Steinbach and Ehrhardt [23] proposed
the use of an interior point algorithm to solve the NLP and they propose a strategy to exploit the space-
time linear algebra structure. These studies focused on computational performance, with limited modeling
and economic performance analysis. Baumrucker and Biegler [1] present an optimal control formulation
allowing for hybrid behavior arising from flow reversals. The authors propose a mathematical program
with equilibrium constraints formulation and analyze the effect of different electricity price structures on
economic performance.

None of the real-time optimization models presented in the literature account for uncertainty, with
the exception of the work of Carter and Rachford [3]. In their work, they present a detailed discussion
of uncertainties prevailing in real-time operations and discuss the benefits of using stochastic optimization
formulations to manage line-pack inventory. The authors provide a sound physical analysis of the resulting
optimal policies; however, they do not report the model and solution strategy used.

In this work, we present a detailed stochastic optimal control model that considers conservation and
momentum equations, typical operational constraints, and uncertainty in demands. We perform a degrees-
of-freedom (DOF) analysis to verify the consistency of the model and we use this analysis to derive con-
sistent initial conditions and nonanticipacity constraints. In addition, we propose to incorporate a risk
metric into the objective function to mitigate cost variance and system volatility. Using a computational
study, we demonstrate the benefits obtained with stochastic formulations against deterministic and robust
counterparts and we discuss the effects of discretization mesh resolution on economic performance.

The paper is structured as follows. In Section |2 we present the physical model for the pipelines, net-
work, and compressors. In Section 3| we present a degrees-of-freedom (DOF) analysis to characterize the
differential and algebraic equation (DAE) system and provide conditions to achieve model consistency. In
Section [l we formulate the stochastic optimal control model by defining the objective function, operational
constraints, initial conditions, and nonanticipativity constraints. In Section |5/ we present a computational
study to demonstrate the benefits of the stochastic model over a range of different formulations and we
discuss computational issues. The paper closes in Section [p| with concluding remarks and directions of
future work. The model nomenclature as well as variables and parameter units are presented in Appendix
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2 Physical Model

In this section, we present the conservation and momentum equations governing the dynamics of each
pipeline in the network, and we provide equations describing the network interconnections. Nomencla-
ture, physical units, and typical values for all variables and parameters are given in Appendix

2.1 Conservation, Momentum, and Network

We assume an isothermal and ideal gas flow through a horizontal pipe and define a set £ of pipes or links.
The conservation and momentum equations for a given link ¢ € £ are given by the following set of PDEs
(24, 19]:

Bpg(T, €z, w) + a(pﬁ(T’ z, LL))U)((’T, €, W))

or ox =0 (2.1a)
8(/)5(7’,1‘,0.))11)@(7‘,%,&))) apf(T7x7w) AE
= - . 2.1
87. + ax QDZpE(T,x,W)wE(T,x,CU)’wE(T,I',W)‘ ( b)
Here, 7 € T := [0,T] is the time dimension with final time 7" (planning horizon), and = € A := [0, L] is

the axial dimension with length L,. We also define a set of scenarios w € Q := {1..Nq}. The link diameters
are denoted as D, and the friction coefficients are denoted as \;. The states of the link are the gas density
pe(T, x,w), the gas speed wy(7, z,w), and the gas pressure p;(7, z,w). The transversal area A, volumetric
flow q¢(7, z,w), and mass flow f(7, z,w) are given by
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Here, v is the speed of sound in the gas. We transform (2.1) into a more convenient form in terms of mass

flow and pressure by using and (2.2):
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Substituting (2.3) and (2.2a) in (2.4b) and performing some manipulations, we obtain the more compact
form,
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For numerical purposes, we define scaled flows fo(7,z,w) < ayfi(7,2,w) and pressures py(7,z,w) <
appe(T, v, w), where ay and o, are scaling factors. Scaling (2.5) and rearranging, we obtain
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where the constants ¢y ¢, 2 ¢, and c3 ¢ are defined in Appendix

We now consider a network with a set N of nodes, a set £ of links, a set S of supply flows, and a set
D of demand flows. For each node n € N we define the set of inlet and outlet links, £ := {¢|rec() =
n}, Lo .= {¢|snd(¢) = n}. Here, rec({) is the receiving node of link ¢ and snd(¢) is the sending node of
link ¢. We define dem(j) as the node at which the demand flow d;(7,w) is located and sup(i) as the node
at which the supply flow s;(7,w) is located. Accordingly, we define the sets For S,, := {j € S|sup(j) = n}
and D,, := {j € D|dem(j) = n} for eachnode n € N.

For modeling convenience, we avoid direct linking of the link flows at the nodes. Instead, we introduce
dummy inlet and outlet flow states for each link f{"(7,w) and f§“!(t,w), respectively. In Section [3| we will
see that this modification does not affect the consistency of the model. The flow balances at the nodes are
given by,

Z i (r,w) — Z e (r,w) + Z si(T,w) — Z di(t,w) =0, ne N, 7€ T,we. (2.7)
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The boundary conditions for the link flows can now be specified by using the dummy flows,

fo(T, Ly,w) = fE"(1,w), L€ L, €T, weEQ (2.8a)
fo(m,0,w) = fé"(T,w), te L,reT,we (2.8b)

We assume that the direction of the flows is given. Computational strategies to allow for flow reversals are
proposed in [1].

2.2 Compressors

To link pressures, we define the pressures at the nodes as 0, (7),n € N, and we split the set of links £ into
subsets of passive £, links and active links £,. For the active links, we define the boost pressures Ag,(7),
which is the additional (non-negative) pressure introduced by the compressor located at the inlet (sending)
node of the link. For the passive links, there is no compression. The boundary conditions for the link
pressures are given by

pz(T, quw) = erec(f) (7—7"‘))’ teliTeT,we (2.9a)
Pe(T,0,w) = Ogpgoy (T, w), £ € Ly, 7 €T, w €N (2.9b)
Pe(7,0,w) = Ogpg(e)(T,w) + Aby(7), L € LoyT € T,w € €L (2.9¢)

The total power consumed in the active links, P(7,w), is computed from
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where ¢4 is a constant defined in Appendix

3 DOF Analysis

In this section, we perform a DOF analysis to determine conditions for consistency of the physical model
and to determine appropriate initial conditions. For clarity in the presentation, we consider a discretized
version of the conservation, momentum, and network equations. Assume that the PDEs of each link are
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discretized in space by using a finite difference scheme using N, points of equal length Az, and discretized
in time by using an implicit Euler scheme with V; points of equal length A7 [23]. We define the sets
Xo={1,...N.}, T:={1,...; N}, X~ :={1,..,N, — 1},and T~ := {1, ..., Ny — 1}. The discretized version
of the physical model given by equations (2.6)-(2.10) is,
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The physical model is a DAE system. The dynamic states are the spatially discretized link pressures and
flows with the corresponding spatially discretized PDEs (3.11b)-(3.11d) being the differential equations.
The network equations (3.11a), boundary conditions (3.11d)-(3.1Th), and compressor equations are
algebraic equations. It also makes practical sense to assume that the boost pressures are controls and that
the compressor power outputs are algebraic states because they are uniquely defined the the compressor
equations (3.11i). Note, however, that supply and demand flows as well as node pressures can act as either
algebraic states or controls. In addition, it is not clear that the dummy flows are uniquely defined by the
boundary conditions and network equations. These complications are important because it is necessary
to specify consistent initial conditions for the DAE system. In addition, properly defining the controls
will become important in Section 4.3|to correctly define the so-called nonanticipativity constraints for the
controls. These constraints force the system to reach the same state for all scenarios at a given point in time.

To check for the consistency of the model and identify suitable initial conditions, we first perform a
DOF analysis for a steady-state model. This can be obtained by taking the first time step of and
set derivatives with respect to time to zero. We also consider a single scenario and ignore the compressor
equations (3.11i). This can be done without loss of generality because, for each compressor equation, there
exists an additional power variable P ;(w). We have 2|L|+|S|+|D| variables given by fz 3 ftf”ft, si1,and dj 1,
respectively. The discretized link flows f; ;1 , and pressures py; i give rise to an additional 2|£| N, variables.
We also have | V| variables corresponding to the node pressures 6,, 1 and |£,| variables corresponding to
the boost pressures Af,; for the active links. This gives a total of 2|L|N, + 2|L| + |[N| + |S| + |D| + |L,]
variables. The network balance comprises | V| equations, the discretized PDEs yield 2|L|(N, — 1) equations,
and the boundary conditions comprise 4|£| equations. We thus have a total of 2|L| N, +2| L]+ |N| equations
and |S| + |D| + |£,| DOE. In a practical setting, pressures at the supply nodes and demand flows are fixed.
Imposing these two conditions reduces the number of DOF to |£,|, which are the boost pressures which
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we can use as controls.

The steady-state analysis implies that we can achieve model consistency (i.e., fully specify the model
with zero DOF) by fixing supply pressures, demand flows, and boost pressures. Note also that fixing these
variables automatically renders supply flows and demand pressures as algebraic states. We also note that,
if boost pressures are free and demand pressures are fixed in addition to demand flows then the number of
DOF is reduced to |£,| — |D| and this can significantly constrain the operational flexibility. This is important
as it indicates that fixing demand flows and pressures would be impossible unless the system has a large
number of compressors. In Section 4f we discuss strategies to increase model flexibility by using softening
constraints.

Based on the steady-state analysis, we can also conclude that all that is needed to fully define a steady-
state of the system is to fix supply pressures, demand flows, and boost pressures and we need to impose
the steady-state equations. This requires a total of 2|L|N, + 2|L| + |[N| + |S| + |D| + |L4| equations. We
now analyse the discretized dynamic model over the entire time horizon. From the steady-state
analysis we see that, if supply pressures and demand flows are fixed throughout the time horizon, we
require |L,|(/N; — 1) DOF for the dynamic model to be consistent. This is because the initial conditions
for the boost pressures are given. From (3.11) we see that we have a total of |[N|N; + 2|L|N; + |S|Ny +
|D|N¢ + |La| Nt + 2|L| Ny Ny variables and |[N'|N; + 2|L|(N, — 1)(Ny — 1) + 4|L|N¢ + 2|L| N, equations. The
last quantity equals |N|N; + 2|L| Ny Ny + 2|L|N; — 2|L|(N, — 1) equations. If we specify 2|L|(N, — 1) initial
conditions, then we have |N|N; + 2|L|N,N; + 2|L|N; equations, and these give (|S| + |D| + |£,|)N; DOE.
By fixing supply pressures and demand flows for the entire time horizon and by fixing the boost pressures
for the first time step, we obtain |£,|(N; — 1) DOF, as desired. We thus conclude that it is necessary to
specify 2|L|(N, — 1) initial conditions for the full dynamic model to be consistent. Note that we do
not fix the initial conditions for the entire discretized profiles fy 1 1(w), pe1k(w) because doing so would
entail 2|L|N, equations -2|£| more than necessary. The reason is that the boundary conditions introduce
connectivity between the profiles. In Section[4.2|we discuss a couple of strategies to consistently specify the
initial conditions.

We remark that in a practical setting, boost pressures (or compressor power) are in closed-loop with
the discharge pressures of the compressors and the discharge pressure set-points are used controls. This
setting is suggested in [3]]. In the setting proposed here, we use the boost pressures as controls in order to
avoid the need to model feedback loops.

4 Stochastic Optimal Control Model

In this section we describe the objective function, physical constraints, and initial conditions of the optimal
control model.

4.1 Objective Function

We assume that the cost function for scenario w has the following form

plw) = Z Z CetPpi(w)AT + Z Z ca(dji(w) — dj(w))2AT
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The first term is the total compressor cost over the horizon where c. ; is the compression cost at time step
t. The second term penalizes deviations of the demands d; +(w) from the desired signals d;+(w) and ¢, as
the penalty factor. Here, we assume that the demand signals are random. The model can be generalized
to include compressor failures and other uncertain externalities but we focus on the demand case in order
to simplify the presentation. The last two terms penalize deviations of the final flow and pressure axial
profiles py 7.1 (w), fo 7,1 (w) from the initial axial profiles py 1 x(w), fo1,1(w) and cr is the penalty cost. These
terminal constraints are typically required by operators to return the system to the original state. In the
absence of these terminal constraints, the system will tend to deplete the line-pack inventory stored in the
pipelines to minimize compression, leaving the system in a risky position for the next planning horizon
[9]. This raises the issue of what is an appropriate initial steady-state for the system. We discuss this issue
further in Section [4.2| as it pertains to the specification of the initial conditions. We emphasize that the
terminal constraints are enforced by a penalty approach as opposed to the use of equality constraints. The
latter approach would entail imposing 2|L| NV, equations, but the model has only |£,|(N; — 1) degrees of
freedom; consequently, we would need a time horizon with as many steps as the number of spatial points
for the links in order to have any DOF left, clearly an impractical solution. In Section[5|we demonstrate that
the penalty term is sufficient in practice to return the system to the initial state even for short time horizons.

In a stochastic optimization setting, one typically minimizes the expected value of the cost ¢(w). This
approach assumes that the decision-maker (operator) is risk-neutral. It is also possible, however, to incor-
porate risk metrics to account for risk-averse decision makers. This approach can help the decision maker
obtain operating policies that mitigate cost variance (volatility). Here, we use the conditional-value-at-risk
(CVaR) metric because it is amenable to optimization [21]]. We define a weighted sum of the expected value
and CVaR metric (risk-mean) as the objective function. This is given by,

¥ =(1-¢E[p(w)] +£CVaR[p(w)] . (4.13)
Here,

CVaR [p(w)] = myin v+ %E [p(w) —v] ]|, (4.14)

— 0

¢ € [0, 1] is the weighting factor, and o is the confidence level.

4.2 Constraints

In a typical operational setting, the supply pressures are fixed (because the operator has no control over
them), and demand flows are required to be satisfied stricitly. We impose only the following on the supply
pressures,

Osup(i) 1 (W) = 0;?, i€ S,teT,wel, (4.15)

and we implicitly fix the demand signals through the penalty term in (£.12). By allowing demands to be
free, the number of DOF increases to £, (N; — 1)+ |D|N; per scenario. Although the demands are penalized,
this flexibility is important because stricitly enforcing demands during dynamic transitions is difficult. The
quadratic term is also beneficial because it adds positive curvature to the Hessian matrix and it allows us
to identify infeasible scenarios.

From the DOF analysis we have determined that, for the model to be consistent, we need to fix supply
pressures and demand flows for the entire horizon, set the boost pressures for the first time step, and
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specify 2|L|(NN; — 1) initial conditions. If we do this naively, we would be tempted to specify the entire axial
profiles for flows and pressures at the initial time step. This would lead, however, to 2|£| N, equations, and
we would need to drop 2|£| equations. Dropping boundary conditions is nontrivial because they set the
connection between the dummy flows and link flows and the connection between node pressures and link
pressures. We can achieve consistent initial conditions by simply dropping the first or last element of the
initial pressure and flow profiles. In this case we will drop the last element. We thus append following set
of equations to the full dynamic model (3.11),

Abp1(w) = A0, L€ Ly,w € Q (4.16a)
foan(w) = fip, LELKEX ,weQ (4.16b)
peik(w) =php, LELEEX weEN (4.16¢)

in addition to to fix the supply pressures and the penalty term to fix the demand flows. Here,
AH?, fg s p2 ;. are the initial conditions. For the initial conditions to be consistent, these must satisfy the
algebraic equations (network and boundary conditions) of the dynamic model (3.11). We can find con-
sistent initial conditions by solving the steady-state version of with fixed boost pressures, supply
pressures, and demands flows.

A much more convenient and direct way of finding consistent initial conditions is to directly append
the following steady-state equations to the dynamic model (3.11),

Abp1(w) = AGY, £ € Loyw € Q (4.17a)
0= —¢p Jetrn@ = Fear@) ) pCp e (4.17b)
’ Axy
0= —cum’l’kﬂ(w) —Pear(w) — 3y fz’l’k(w)’fé’l’kw”, leL,xc X, we. (4.17¢)
Axy pe1 k(W)

Equations fully specify the initial steady-state because the supply pressures are fixed from (4.15)
and the demand flows are implicitly fixed through the penalty term. This formulation has an additional
advantage: it might be of interest to the operator to simultaneously determine an optimal initial steady-
state (and thus terminal steady-state) to aid the dynamic policies in the horizon (e.g., to strategically allocate
initial inventory in the network). This can be done by dropping the initial conditions of the boost pressures
ET73).

We also impose the following bounds for the compressors and demand pressures:

Pl <Py(w) <P/, teLloyteT,we (4.18a)
05" < Oy 1 (w) < 0"V, L€ Lot €T, weQ (4.18b)
07" < Ouna(oy 1 (W) + Mgpaqy 1 (w) < 0757, L€ Lot €T, weQ (4.18¢)

0F < Ogem(jya(w) <07V jeDte T,we. (4.18d)

The first set of bounds gives the minimum and maximum compressor power at each active link. A nonzero
lower bound indicates that a compressor must run because of equipment protection reasons. The second
set of bounds imposes minimum and maximum suction pressures for the compressors. The third set of
bounds impose minimum and maximum discharge pressures for the compressors. The fourth set of bounds

imposes minimum and maximum pressure at the demand nodes. Note that this range can be narrow.
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4.3 Formulations

The discretized optimal control model is an NLP with the following structure

min Risk-Mean Objective (4.13)
s.t. Physical Model (3.11)

Supply Pressures (4.15)
Initial Conditions (4.16) or (4.17))

Bounds (4.18).

From the DOF analysis we have that the control variables in this problem are the boost pressures A, ;(w)
and the demand profiles d; ;(w) but the latter are fixed implicitly through the penalty term in the objective
function. Putting all the scenarios together gives a total of |2||L,|(N; — 1) DOE. Solving this problem (with
weight £ = 0 in the objective (4.13)) yields a wait-and-see (WS) solution. The WS setting is an ideal setting
in which it is assumed that we can obtain a different control policy for each scenario (i.e., we have perfect
information at the moment of decision) [2]. In a real setting, however, the operator needs to obtain a single
control policy (make a decision now) in preparation for the uncertain future demands. We denote 7¢ < N;
as the decision time step at which uncertainty is revealed. Before this time, system operation must remain
the same for all scenarios up to time step 7%. In other words, the dynamic system must reach the same
state for all scenarios at time 7 for the model to be consistent. From the DOF analysis we know that we
can achieve this by enforcing the boost pressures to be equal accross scenarios. We thus add the following
nonanticipativity constraints,

Abpi(w) = E[AOp4(w)], £ € Loyt € {1.T},w e Q\ {1} (4.19)

Note that beyond time step 7%, the boost pressures are allowed to be scenario independent. In addi-
tion, adding the nonanticipativity constraints reduces the number of degrees of freedom to |L,|(T; — 1) +
|Q|La| (Nt — Ty). If T; = N; we obtain a single control policy over the entire horizon and the problem will
become infeasible because the demands will not be able to be fulfilled for each scenario.

Imposing the nonanticipativity constraints on the model (with £ = 0) yields the so-called here-and-now
(HN) solution. In the following, we will refer to the CVaR solution as the solution of the optimization
model that enforces the nonanticipativity constraints and uses a non-zero weight .

We remark that the optimization model follows a two-stage setting in which the first-stage involves
time steps up to the decision time step 7% and the second stage involves the recourse actions taken after
the decision time when uncertainty unfolds until the end of the horizon N;. This implicitly assumes that
uncertain demand profiles for t = T,; + 1, ..., N; reveal simulatenously for the second time period and not
progressively at each time step, which would yield a multi-stage formulations. Consequently, the two-stage
structure is more restrictive but also computationally more tractable.

We also define the deterministic solution of the optimization model. Here, the control policy up to time
T9 is computed by assuming that the expected value of the demands is realized in the second-stage. We
then fix the first-stage policy to evaluate the second-stage policies using the actual scenarios. We also
consider the worst-case (WC) solution in which we compute the policy up to 7% by assuming that the worst
scenario (in terms of cost) is realized in the second-stage. We then fix this policy to evaluate the second-
stage policies using the actual scenarios.
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Figure 1: Schematic representation of gas network system.
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5 Computational Study

We consider the network system sketched in Figure[l} The system comprises V| = 13 nodes, |£] = 12 links
(|£4| = 10 compressors), |S| = 1 supply flow located at the first node, and |D| = 1 demand flow located at
the last node. The system spans 1,600 km with 36 inch (914 mm) pipes. The distance between compressors
is 100 km. The pressure at the demand node (6,,,) should be maintained at least at 39 bar (565 psia) with
a nominal demand flow of 24x10%° SCM/day. The pressure at the supply point is 57 bar (827 psia). The
minimum suction pressure for the compressors is 34 bar (493 psia). The maximum power available for the
compressors is 3,000 kW, and we set the cost of compression to 0.10 $/kWh.

We consider a planning horizon 7" of 24 hours discretized in N; = 48 time intervals A7 of 30 min (1800
sec). The decision time step T is set to 20 (9.5 hours into the horizon). Each link is discretized in space by
using N, = 10 points. We consider three demand profile scenarios. The demand from the initial time up to
decision time remains at the nominal value of 10 x 105 SCM/day. At the decision time 7 it can increase
to either {11,12, 13} x 105 SCM/day for 5 hours (10 time steps), then it returns to the original value at time
Te". Essentially, these events are step functions. We will refer to these scenarios as the low, medium, and
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high demand scenarios, respectively. Note that the high demand scenario raises the demand by 30% above
the nominal value. These types of events are typical of systems delivering gas to peaking power plants that
can quickly come on-line with little or no notice [3]].

The resulting NLPs are implemented in the algebraic modeling language AMPL [10] to obtain exact
first and second order derivatives. The NLPs are solved by using the interior-point solver IPOPT with
an adaptive barrier strategy [25) [17]. All problems are solved to a tolerance of 1 x 107%. MA57 is used
as the sparse linear solver and we use the nested dissection strategy implemented in METIS to perform
reordering [8| 12, 26| 27]. The AMPL model and data for this case study can be obtained from http:
//www.mcs.anl.gov/~vzavala/PDEGasModel.tgz. All computations were performed on a 2.7GHz
processor with 16MB of memory and running Linux.

5.1 Model Behavior and Performance

We first discuss the behavior of the model in order to demonstrate its features and consistency. We start by
considering the optimal time profiles for the first two compressors of the HN solution. These are presented
in Figure 2| Note that prior to 7%, the compressor policy is the same in all scenarios. At the decision
time, the profiles become scenario-dependent, and they eventually return to the same initial point. This
demonstrates that imposing terminal constraints on the axial profiles is sufficient to define the final point
for all states (both algebraic and dynamic) and controls.

Flow [scmx10%/day]

10
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Figure 3: Optimal axial flow profiles for low (left), medium (middle), and high (right) demand scenarios.
Here-and-now solution.
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Figure 4: Optimal time profiles for flow in last link for low (left), medium (middle), and high (right) demand

scenarios. Here-and-now solution.

In Figure |3 we present the axial flow profiles for the entire network for the three scenarios. The gray
lines are the profiles prior to time 79, and the black lines are the profiles during the period of increased
demands (from 7% to T°"?). The axial profiles prior to 7' are the same for the scenarios demonstrating that
the nonanticipativity constraints and initial conditions are consistent. In addition, demand is satisfied at
each time step for all scenarios. This can also be seen in Figure {4{in which we present time profiles for the
flows at each spatial point in the last link. Note that the flow profile at the boundary of the system (black
line) is capable of tracking the step changes in the demands exactly in all scenarios.

From Figure 3l we can see that the optimal HN policy consists on progressively accumulate line-pack
toward the end of the system reflected by a large increase of flow close to the demand node. Once uncer-
tainty is revealed, the system takes three different paths. To understand the optimal policies in more detail,
in Figures 5|and |§I we present the axial flow and pressure profiles at 7% (right before demand increases), at
the subsequent time step 7% + 1 (when uncertainty is revealed), and at the end of the increased demand
period T°"¢ (when demand returns to original level). From the high demand scenario we note that even
if inventory is built up, flow needs to be increased further at the next time step to satisfy the demand at
T9 + 1. This is accomplished by increasing the compression rates in the last two stations. At 74, however,
the inventory is released in order to minimize compression and start moving the system to the original low
demand level. This is accomplished by flattening the pressure profile (shut down compression) close to the
end of the system. Note that the drop in compression power at the last two stations triggers a complex flow
profile upstream, illustrating the complex physical behavior of the system. For the low demand scenario,
the inventory built prior to T¢ is sufficient to satisfy demand and this is accomplished by progressively
flattening the pressure profiles to release the inventory. The medium demand scenario exhibits a similar
profile except that the pressure profile is not flattened as quickly and thus requiring more compression
power to have a controlled release of inventory. The total compression energy for the low, medium, and
high demand scenarios is 92742 kWh, 99783 kWh, and 113672 kWh, respectively.

12
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Figure 5: Optimal flow profiles for low (left), medium (middle), and high (right) demand scenarios. Gray
line is profile at decision time 7%, black line is profile at 7¢ + 1 (30 minutes later), dashed line is profile at

Tend

Figure 6: Optimal pressure profiles for low (left), medium (middle), and high (right) demand scenarios.
Gray line is profile at decision time 7%, black line is profile at t7¢ + 1 (30 minutes later), dashed line is

profile at 7.
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Figure 7: Optimal axial flow profiles for low (left), medium (middle), and high (right) demand scenarios.

Deterministic solution.
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Figure 8: Optimal axial flow profiles for low (left), medium (middle), and high (right) demand scenarios.

Wait-and-see solution.

5.2 Comparison of Formulations

We now compare the performance of the WS, HN, WC, CVaR, and deterministic formulations. The optimal
flow profiles for the deterministic formulation are presented in Figure[7} The policy does not build as much
inventory as does the HN solution presented in Figure (3| As a result, while the low and medium demand

scenarios are feasible, the system struggles to satisfy the high demand scenario. In fact, we have found
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that the demand needs to be curtailed for the system to remain feasible. This high-stress behavior is also
reflected in highly volatile flow profiles resulting from aggresive recourse actions.

The axial flow profiles for the WS solution are presented in Figure (8l As can be seen, the profiles are
similar to those of the HN solution presented in Figure 3 The ideal WS solution, however, presents less
volatile profiles than those of the HN counterpart because it does not need to start from a common profile
at T toward the profiles for the different scenarios, as in the HN policy. In particular, the WS axial profiles
prior to T are different for each scenario, giving the system more flexibility. In other words, inventory
can be planned differently for each scenario because we have perfect information. This is particularly
evident in the low and high demand scenarios. The total power consumed in the WS scenarios are 88245
kWh, 98914 kWh, and 112779 kWh, respectively. This is less than 1% per scenario, compared with the HN
solution. Clearly, significant robustness can be gained by using the HN formulation over the deterministic
one without sacrificing much performance over the ideal case of perfect information.

In practice, operators are risk-averse and can act conservatively to ensure that the system can fulfill high
demand scenarios. To capture this behavior, we now compare the HN solution with the WC solution. In
Figure 9] we present the axial profiles for the WC solution in which the system is prepared defensively for
the period of high demand. In this case, the high demand scenario is feasible. Note, however, that the low
demand scenario now exhibits a high degree of volatility because the system needs to move rapidly from a
point of very high inventory to a point of low demand. The total power consumed in the WC scenarios is
96063 kWh, 100938 kWh, and 112779 kWh, respectively. Note that the WC solution leads to more expensive
operations particularly for the low demand scenario. While the difference in performance compared with
that of the HN policy is not exorbitant in this case study, the issue of solution volatility induced by the
robust formulation can be undesirable to the operator. We should also highlight that, as seen in the results,
the worst-case approach can place the system at a far-distant state from which it might not recover because
of dynamic limitations.

Table 1: Comparison of formulations in terms of total energy consumed.
Formulation = Compression Energy (kWh)

WS 88245, 98914, 112779
HN 92742,99783, 113672
WC 96063, 100938,112779
CVaR (£=0.25) 93075, 99910, 113351

CVaR (£=0.50) 93692, 100150, 113061
CVaR (£=0.75) 94572, 100496, 112856
CVaR (£=0.90) 95217, 100729, 112797

To allow for a more systematic management of risk, we now introduce the CVaR metric into the cost
function. In Figure[10|we present the axial profiles for a weighting parameter £ = 0.5 (equal weight between
expected value and CVaR value). Compared with the HN solution of Figure[3} the CVaR metric can decrease
the volatility of the profiles in the extreme (low and high demand) scenarios. The total power consumed
in this case is 93692 kWh, 100150 kWh, and 113061 kWh, lower than those obtained with the WC solution
for the low and medium demand scenarios. The difference between the low and high demand scenarios is
19369 kWh, while for the HN solution it is 20930 kWh indicating that cost variability can be mitigated. As
we increase the weight £ toward one, the CVaR solution becomes more defensive and mimics the worst-
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case solution. In Table[I|we present the total power consumed for the different formulations. We conclude
that the CVaR formulation can help operators systematically adjust their risk-averseness and evaluate the
impact of a given policy on economic performance and system behavior. Note also that the use of stochastic

formulations is informative to the operator as it allows her/him to evaluate system dynamic behavior

under a range of possible scenarios and to position the system at a “safe” state.

Figure 9: Optimal axial flow profiles for low (left), medium (middle), and high (right) demand scenarios.

Worst-case solution.

Figure 10: Optimal axial flow profiles for low (left), medium (middle), and high (right) demand scenarios.
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5.3 Scalability Issues

Clearly, the optimal control model presented is computationally challenging. The first source of complexity
is the presence of nonlinear PDEs in each link, which are in turn coupled through the network constraints.
The second source of complexity is the number of scenarios, although well-established techniques are avail-
able for parallelization. Here, we report on the effects of the discretization mesh resolution and number of

scenarios on the dimensions of the NLD, scalability, and economic performance.

Table 2: Effect of discretization resolution on computational and economic performance.

|| Ny n m Iterations Time [min:sec] Energy [kWh]
1 2 6278 5736 47 00:02 89566
1 6 13190 12600 45 00:10 98182
1 10 20102 19464 44 00:19 98914
1 20 37382 36624 45 00:45 99351
1 60 106502 105264 56 02:59 99612
1 100 175602 173904 58 05:43 99663
3 2 18832 17658 36 00:13 86391,91333,98294
3 10 60304 58832 52 03:18 92742,99783,113672
3 20 112144 110312 51 07:18 92464,99937,114327

Computational results are presented in Table 2l We first note that a problem with a high discretization
resolution (N, = 100) and a single scenario gives rise to an NLP with over 175,000 variables n and equality
constraints m. NLPs of such dimensions (and over) are typical in optimal control of PDEs when a full
discretization approach is used [22} 5, 26]. The solution time for the high-resolution problem is 6 minutes,
and we can expect similar times for solving instances with more scenarios if linear algebra parallelization
is implemented to split the scenarios. In particular, we note that the number of first-stage variables in this
problem is less than 200 (given by the control policies of the 10 compressors up to time step 7'¢ = 20). For
problems with this number of first-stage variables, Schur decomposition exhibits nearly perfect speedups
[14, 11} 28]. If we increase the number of compressors from 10 to 100 the number of first-stage variables
will be on the order of 2,000 for which Schur decomposition can still achieve nearly perfect speedups.
Note, however, that problems with over 200 compressors or longer first-stage periods (i.e., large 7¢) will
deteriorate scalability. We also note that even for a simple network with 13 nodes and 12 links and a single
scenario, the solution times for a high-resolution problem are already on the order of 6 minutes. If we
increase the number of links by a factor of 10 (from 12 to 120), we can expect NLPs with already 1,000,000
variables and solution times of over an hour (in the ideal case of linear scalability), which limits the model
applicability in real-time environments. This points to the need to develop solution strategies that couple
scenario decomposition with space-time decomposition schemes.

In the last three rows of Table [2 we present computational results for problems with 3 scenarios and 2
different discretization resolutions. The minimimum total energy computed for the case with 2 discretiza-
tion points per link is underestimated by nearly 10-15% compared to the high resolution model of 20 dis-
cretization points. These coarse discretization schemes have been used in several studies [9, [16] and we
should emphasize that they can have strong effects on economic performance. In addition, we have also
observed that, because of the limited number of degrees fo freedom in the model, control policies obtained
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with a low resolution discretization model are infeasible for high resolution models. This situation is man-
ifested in the inability of the system to meet demand signals.

6 Conclusions and Future Directions

We have presented a stochastic optimal control model for natural gas network operations. The consistency
of the model has been verified using a DOF analysis. We have found that the use of stochastic policies can
significantly aid robustness in operations compared with deterministic policies. Robustness is particularly
critical in gas networks because of the complex physical behavior propagating throughout the system and
because of the limited degrees of freedom available for operation. We have also found that the use of risk
metrics provide flexibility to the operator to mitigate system volatility. Our computational study suggests
that off-the-shelf solvers are insufficient to solve problems of real complexity. This situation motivates
interesting research directions. The complexity induced by the number of scenarios can be mitigated by
using Schur decomposition strategies, as suggested in [14} 11} 28]. To deal with larger networks, however,
one must couple Schur decomposition with advanced space-time discretization strategies [4] and strategies
to perform time-space separation [23]. Modeling extensions are needed that account for more rigorous
physics including nonisothermal operations in order to capture weather effects. Moreover, physical models
must be developed for control elements such as valves. Additional developments are needed including
multi-stage models and uncertainty characterizations of demand profiles by coupling with power grid
dispatch operations.
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A Nomenclature and Constants

The speed of sound in the gas (assuming an ideal gas behavior), the friction factor )\, the gas isentropic
expansion factor v, and the compression coefficient 5 can be computed from,

-2
9 YV2RTyus 3.7Dy Cp v—1
v 7 ¢ < ogm< ” 1= p _—

where z is the gas compressibility factor, R is the universal gas constant, Ty, is the gas temperature, M is
the gas molar mass, ¢ is the pipe rugosity, and ¢, is the heat capacity of the gas at constant volume. We
also define the following auxiliary constants:
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Here, ¢, is the gas heat capacity at constant pressure.
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Table 3: Model variables and units.

Variable Description Units
Time s

x Spatial dimension m
w Scenario -
p Density inside pipe %
w Speed inside pipe =
q Volumetric flow inside pipe mTS
f Flow inside pipe %ﬁlo_‘l
D Pressure inside pipe bar

fn Pipe inlet flow SCMx1072

rout Pipe outlet flow SCMx10~+
s Supply flow SCMhifﬂlo_zl
d Demand flow SCMhiXTlO%
0 Node pressures bar

Af Compressor boost bar
P Compressor power EW
© Cost function $
v Objective function $.
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Table 4: Model parameters and units.

Parameter  Description Units
T,T¢ Planning time, decision time s
AT, Ax Time and space discretization interval length s, m
1 Weighting parameter -
v Speed of sound in gas =
Cpy Cy Gas heat capacities at constant pressure and volume 2.34]£—JK,1.85I£—JK
v, % Gas isentropic expansion coefficient and compressibility -
R Universal gas constant 8,314 kgmi 7 (=] kgig?}(
M Gas molar mass 18+ gkjoz
Pn Gas density at normal conditions 0.72%
Tyas Gas temperature 29315 K
L,D,A Pipe length, diameter, and transveral area m, m, m?
A€ Friction coefficient and pipe rugosity -, m
af Scaling factor for flow 15’ i%(lopn [=] SCM:;/OS_4/ hr
ap Scaling factor for pressure 1x 10755
cf Cost of compression % % [=] %
c1 Auxiliary constant SCII Xbl%r,/ o T
Co Auxiliary constant %}:/}LH
c3 Auxiliary constant W’C‘l—s/hr
c4 Auxiliary constant WM
Cd, cr Tracking cost for demands and terminal constrains -
PL, PY Lower and upper bounds for compressor power EW
gdemL gdemU 1 ower and upper bounds for pressures at demand nodes  bar
gsuel, gsuel' TLower and upper bounds for suction pressures bar
gdis:L, gdisU Tower and upper bounds for discharge pressures bar
gsup Supply pressure bar
d Desired demand signal %ﬁloﬁ
AQ° Initial conditions for boost pressures bar
fO Initial conditions for scaled flows SCMhiXTlO%
p° Initial conditions for scaled pressures bar
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